A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them. These are contrasted to reactors, which refer to the early prototype of power reactors, such as Shippingport, Magnox/UNGG, AMB, Fermi 1, and Dresden 1. The last commercial Gen I power reactor was located at the Wylfa Nuclear Power Station and ceased operation at the end of 2015. The nomenclature for reactor designs, describing four 'generations', was proposed by the US Department of Energy when it introduced the concept of generation IV reactors. The designation generation II+ reactor is sometimes used for modernized generation II designs built post-2000, such as the Chinese CPR-1000, in competition with more expensive generation III reactor designs. Typically, the modernization includes improved safety systems and a 60-year design life. Generation II reactor designs generally had an original design life of 30 or 40 years. This date was set as the period over which loans taken out for the plant would be paid off. However, many generation II reactors are being life-extended to 50 or 60 years, and a second life-extension to 80 years may also be economical in many cases. By 2013 about 75% of still operating U.S. reactors had been granted life extension licenses to 60 years. Chernobyl's No.4 reactor that exploded was a generation II reactor, specifically RBMK-1000. Fukushima Daiichi's three destroyed reactors were generation II reactors; specifically Mark I Boiling water reactors (BWR) designed by General Electric. In 2016, unit 2 at the Watts Bar Nuclear Generating Station came online and is likely to be the last generation II reactor to become operational in the United States.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-600: Frederic Joliot/Otto Hahn Summer School on nuclear reactors Physics, fuels and systems
The School's aim is to address the challenges of reactor design and optimal fuel cycles, and to broaden the understanding of theory and experiments. The programme of each School session is defined by
PHYS-445: Nuclear fusion and plasma physics
The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.
Show more
Related publications (34)
Related concepts (4)
Generation III reactor
Generation III reactors, or Gen III reactors, are a class of nuclear reactors designed to succeed Generation II reactors, incorporating evolutionary improvements in design. These include improved fuel technology, higher thermal efficiency, significantly enhanced safety systems (including passive nuclear safety), and standardized designs intended to reduce maintenance and capital costs. They are promoted by the Generation IV International Forum (GIF).
Boiling water reactor
A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor. The main difference between a BWR and PWR is that in a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine. In a PWR, the reactor core heats water, which does not boil.
Pressurized water reactor
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.