An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".
The rapid transition from a non-conducting to a conductive state produces a brief emission of light and a sharp crack or snapping sound. A spark is created when the applied electric field exceeds the dielectric breakdown strength of the intervening medium. For air, the breakdown strength is about 30 kV/cm at sea level. Experimentally, this figure tends to differ depending upon humidity, atmospheric pressure, shape of electrodes (needle and ground-plane, hemispherical etc.) and the corresponding spacing between them and even the type of waveform, whether sinusoidal or cosine-rectangular. At the beginning stages, free electrons in the gap (from cosmic rays or background radiation) are accelerated by the electrical field. As they collide with air molecules, they create additional ions and newly freed electrons which are also accelerated. At some point, thermal energy will provide a much greater source of ions. The exponentially-increasing electrons and ions rapidly cause regions of the air in the gap to become electrically conductive in a process called dielectric breakdown. Once the gap breaks down, current flow is limited by the available charge (for an electrostatic discharge) or by the impedance of the external power supply. If the power supply continues to supply current, the spark will evolve into a continuous discharge called an electric arc. An electric spark can also occur within insulating liquids or solids, but with different breakdown mechanisms from sparks in gases.
Sometimes, sparks can be dangerous. They can cause fires and burn skin.
Lightning is an example of an electric spark in nature, while electric sparks, large or small, occur in or near many man-made objects, both by design and sometimes by accident.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up
prototypes to Spark clusters. It exposes the students to the entire data science pipe
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air (or other fluid) has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field (potential gradient) around a conductor exceeds the dielectric strength of the air.
Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, where the electric charge flows through an electrical conductor or space, and transmits energy. A static electric charge can be created whenever two surfaces contact and or slide against each other and then separated.
In this paper a three-dimensional (3D) Time Reversal MUltiple SIgnal Classification (TR-MUSIC) algorithm is proposed to localize lightning discharges. The performance of the proposed algorithm was evaluated considering different scenarios and taking into a ...
Elastomer composites are prepared by infiltrating polydimethylsiloxane (PDMS) into a porous ceramic structure of nanoparticles. This method differs from the conventional approach, where particles are dispersed into the polymer matrix, since here, the polym ...
The physical mechanism of Narrow bipolar events (NBEs) has been studied for decades but it still holds many mysteries. Recent observations indicate that the fast breakdown discharges that produce NBEs sometimes contain a secondary fast breakdown that propa ...