Summary
A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. (In at least one case, the double pulsar PSR J0737-3039, the companion neutron star is another pulsar as well.) Binary pulsars are one of the few objects which allow physicists to test general relativity because of the strong gravitational fields in their vicinities. Although the binary companion to the pulsar is usually difficult or impossible to observe directly, its presence can be deduced from the timing of the pulses from the pulsar itself, which can be measured with extraordinary accuracy by radio telescopes. The binary pulsar PSR B1913+16 (or the "Hulse-Taylor binary pulsar") was first discovered in 1974 at Arecibo by Joseph Hooton Taylor, Jr. and Russell Hulse, for which they won the 1993 Nobel Prize in Physics. While Hulse was observing the newly discovered pulsar PSR B1913+16, he noticed that the rate at which it pulsed varied regularly. It was concluded that the pulsar was orbiting another star very closely at a high velocity, and that the pulse period was varying due to the Doppler effect: As the pulsar was moving towards Earth, the pulses would be more frequent; and conversely, as it moved away from Earth fewer would be detected in a given time period. One can think of the pulses like the ticks of a clock; changes in the ticking are indications of changes in the pulsars speed toward and away from Earth. Hulse and Taylor also determined that the stars were approximately equally massive by observing these pulse fluctuations, which led them to believe the other object was also a neutron star. Pulses from this system are now tracked to within 15 μs. (Note: Cen X-3 was actually the first "binary pulsar" discovered in 1971, followed by Her X-1 in 1972) The study of the PSR B1913+16 binary pulsar also led to the first accurate determination of neutron star masses, using relativistic timing effects. When the two bodies are in close proximity, the gravitational field is stronger, the passage of time is slowed – and the time between pulses (or ticks) is lengthened.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.