In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.
In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite.
The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers.
Although the terms "countable" and "countably infinite" as defined here are quite common, the terminology is not universal. An alternative style uses countable to mean what is here called countably infinite, and at most countable to mean what is here called countable. To avoid ambiguity, one may limit oneself to the terms "at most countable" and "countably infinite", although with respect to concision this is the worst of both worlds. The reader is advised to check the definition in use when encountering the term "countable" in the literature.
The terms enumerable and denumerable may also be used, e.g. referring to countable and countably infinite respectively, but as definitions vary the reader is once again advised to check the definition in use.
A set is countable if:
Its cardinality is less than or equal to (aleph-null), the cardinality of the set of natural numbers .
There exists an injective function from to .
is empty or there exists a surjective function from to .
There exists a bijective mapping between and a subset of .
is either finite () or countably infinite.
All of these definitions are equivalent.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
In mathematics, the natural numbers are the numbers 1, 2, 3, etc., possibly including 0 as well. Some definitions, including the standard ISO 80000-2, begin the natural numbers with 0, corresponding to the non-negative integers 0, 1, 2, 3, ..., whereas others start with 1, corresponding to the positive integers 1, 2, 3, ... Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers).
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Covers cardinality of sets, poset, equivalence relations, and geometric progressions through a quiz on Kahoot.
Explores the properties of relations in computer science, including equivalence relations and the partition of a set.
Delves into renormalization, fractals, and strange attractors, exploring the properties of countable and uncountable sets.
Neuromodulation of neocortical microcircuits is one of the most fascinatingand mysterious aspects of brain physiology. Despite over a century of research,the neuroscientific community has yet to uncover the fundamentalbiological organizing principles under ...
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
A new approach is presented to obtain a convex set of robust D—stabilizing fixed structure controllers, relying on Cauchy's argument principle. A convex set of D—stabilizing controllers around an initial D—stabilizing controller for a multi-model set is re ...