MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-250: Algorithms IThe students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
MATH-436: Homotopical algebraThis course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
CS-455: Topics in theoretical computer scienceThe students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
MATH-467: Probabilistic methods in combinatoricsThe 'probabilistic method' is a fundamental tool in combinatorics. The basic idea is as follows: to prove that an object (for example, graph) with certain properties exists, it suffices to prove that