Continuous symmetryIn mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Gluon fieldIn theoretical particle physics, the gluon field is a four-vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in quantum electrodynamics - the gluon field constructs the gluon field strength tensor. Throughout this article, Latin indices take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices take values 0 for timelike components and 1, 2, 3 for spacelike components of four-dimensional vectors and tensors in spacetime.
Relativistic quantum mechanicsIn physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics.
Gluon field strength tensorIn theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum field theory (QFT) to describe it is called quantum chromodynamics (QCD). Quarks interact with each other by the strong force due to their color charge, mediated by gluons. Gluons themselves possess color charge and can mutually interact.
Projective representationIn the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group where GL(V) is the general linear group of invertible linear transformations of V over F, and F∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation). In more concrete terms, a projective representation of is a collection of operators satisfying the homomorphism property up to a constant: for some constant .
Magnetic monopoleIn particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. The known elementary particles that have electric charge are electric monopoles.
Lorentz groupIn physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: The kinematical laws of special relativity Maxwell's field equations in the theory of electromagnetism The Dirac equation in the theory of the electron The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature.