In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group
where GL(V) is the general linear group of invertible linear transformations of V over F, and F∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation).
In more concrete terms, a projective representation of is a collection of operators satisfying the homomorphism property up to a constant:
for some constant . Equivalently, a projective representation of is a collection of operators , such that . Note that, in this notation, is a set of linear operators related by multiplication with some nonzero scalar.
If it is possible to choose a particular representative in each family of operators in such a way that the homomorphism property is satisfied on the nose, rather than just up to a constant, then we say that can be "de-projectivized", or that can be "lifted to an ordinary representation". More concretely, we thus say that can be de-projectivized if there are for each such that . This possibility is discussed further below.
One way in which a projective representation can arise is by taking a linear group representation of G on V and applying the quotient map
which is the quotient by the subgroup F∗ of scalar transformations (diagonal matrices with all diagonal entries equal). The interest for algebra is in the process in the other direction: given a projective representation, try to 'lift' it to an ordinary linear representation. A general projective representation ρ: G → PGL(V) cannot be lifted to a linear representation G → GL(V), and the obstruction to this lifting can be understood via group cohomology, as described below.
However, one can lift a projective representation of G to a linear representation of a different group H, which will be a central extension of G. The group is the subgroup of defined as follows:
where is the quotient map of onto .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants comprennent les caractéristiques de la science quantique. Ils en maitrisent le formalisme et l'appliquent dans les systèmes de base: puits, fils et boites quantiques, qubits.
In mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group which have either finite or zero mass eigenvalues. (Since this group is noncompact, these unitary representations are infinite-dimensional.) It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states.
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by in his work on projective representations. The Schur multiplier of a finite group G is a finite abelian group whose exponent divides the order of G. If a Sylow p-subgroup of G is cyclic for some p, then the order of is not divisible by p. In particular, if all Sylow p-subgroups of G are cyclic, then is trivial.
A correct representation of the lightning current is crucial when the electromagnetic field radiated to a point of interest has to be computed. Based on the engineering models of Transmission Line type, such representation involves the knowledge of the ret ...
A method for enforcing smoothness constraints on surface meshes produced by a Graph Convolutional Neural Network (GCNN) including the steps of reading image data from a memory, the image data including two-dimensional image data representing a three-dimens ...
2023
, ,
Reversibility is of paramount importance in the correct representation of surface peeling in various physical settings, ranging from motility in nature, to gripping devices in robotic applications, and even to sliding of tectonic plates. Modeling the detac ...