Program transformationA program transformation is any operation that takes a computer program and generates another program. In many cases the transformed program is required to be semantically equivalent to the original, relative to a particular formal semantics and in fewer cases the transformations result in programs that semantically differ from the original in predictable ways. While the transformations can be performed manually, it is often more practical to use a program transformation system that applies specifications of the required transformations.
Algebraic semantics (computer science)In computer science, algebraic semantics is a form of axiomatic semantics based on algebraic laws for describing and reasoning about program specifications in a formal manner. The syntax of an algebraic specification is formulated in two steps: (1) defining a formal signature of data types and operation symbols, and (2) interpreting the signature through sets and functions. The signature of an algebraic specification defines its formal syntax. The word "signature" is used like the concept of "key signature" in musical notation.
Game semanticsGame semantics (dialogische Logik, translated as dialogical logic) is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval theory of Obligationes. In the late 1950s Paul Lorenzen was the first to introduce a game semantics for logic, and it was further developed by Kuno Lorenz.
Principle of compositionalityIn semantics, mathematical logic and related disciplines, the principle of compositionality is the principle that the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them. The principle is also called Frege's principle, because Gottlob Frege is widely credited for the first modern formulation of it. However, the principle has never been explicitly stated by Frege, and arguably it was already assumed by George Boole decades before Frege's work.
Domain theoryDomain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology.
Model checkingIn computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification (also known as correctness). This is typically associated with hardware or software systems, where the specification contains liveness requirements (such as avoidance of livelock) as well as safety requirements (such as avoidance of states representing a system crash). In order to solve such a problem algorithmically, both the model of the system and its specification are formulated in some precise mathematical language.
Donald KnuthDonald Ervin Knuth (kəˈnuːθ ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science. Knuth has been called the "father of the analysis of algorithms". He is the author of the multi-volume work The Art of Computer Programming and contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it.
Command (computing)In computing, a command is a directive to a computer program to perform a specific task. It may be issued via a command-line interface, such as a shell, or as input to a network service as part of a network protocol, or as an event in a graphical user interface triggered by the user selecting an option in a menu. Specifically, the term command is used in imperative computer languages. The name arises because statements in these languages are usually written in a manner similar to the imperative mood used in many natural languages.