Function of several complex variablesThe theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space), which the Mathematics Subject Classification has as a top-level heading. As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi.
Critical point (mathematics)Critical point is a wide term used in many branches of mathematics. When dealing with functions of a real variable, a critical point is a point in the domain of the function where the function is either not differentiable or the derivative is equal to zero. When dealing with complex variables, a critical point is, similarly, a point in the function's domain where it is either not holomorphic or the derivative is equal to zero. Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient is undefined or is equal to zero.
Taylor's theoremIn calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation.
Stationary pointIn mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name). For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero).
Transcendental functionIn mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically. Examples of transcendental functions include the exponential function, the logarithm, and the trigonometric functions. Formally, an analytic function f (z) of one real or complex variable z is transcendental if it is algebraically independent of that variable.
Real coordinate spaceIn mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
Integration by partsIn calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.
Jacobian matrix and determinantIn vector calculus, the Jacobian matrix (dʒəˈkəʊbiən, dʒᵻ-,_jᵻ-) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature.
Saddle pointIn mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction (between peaks) and at a relative maximum along the crossing axis. However, a saddle point need not be in this form.
Homogeneous functionIn mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the degree; that is, if k is an integer, a function f of n variables is homogeneous of degree k if for every and For example, a homogeneous polynomial of degree k defines a homogeneous function of degree k.