**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Stationary point

Summary

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name).
For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero).
Stationary points are easy to visualize on the graph of a function of one variable: they correspond to the points on the graph where the tangent is horizontal (i.e., parallel to the x-axis). For a function of two variables, they correspond to the points on the graph where the tangent plane is parallel to the xy plane.
Turning points
A turning point is a point at which the derivative changes sign. A turning point may be either a relative maximum or a relative minimum (a

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

Related units

Related publications (4)

No results

No results

Loading

Loading

Loading

Related concepts (20)

Related courses (28)

Inflection point

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternative

Calculus

Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
It has two major br

MATH-106(a): Analysis II

Étudier les concepts fondamentaux d'analyse, et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

MATH-101(a): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

MATH-106(b): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

Related lectures (93)

Linear subspace models are pervasive in computational sciences and particularly used for large datasets which are often incomplete due to privacy issues or sampling constraints. Therefore, a critical problem is developing an efficient algorithm for detecting low-dimensional linear structure from incomplete data efficiently, in terms of both computational complexity and storage. In this paper we propose a streaming subspace estimation algorithm called Subspace Navigation via Interpolation from Partial Entries (SNIPE) that efficiently processes blocks of incomplete data to estimate the underlying subspace model. In every iteration, SNIPE finds the subspace that best fits the new data block but remains close to the previous estimate. We show that SNIPE is a streaming solver for the underlying nonconvex matrix completion problem, that it converges globally to a stationary point of this program regardless of initialization, and that the convergence is locally linear with high probability. We also find that SNIPE shows state-of-the-art performance in our numerical simulations.

We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. This turns out to be unexpectedly delicate. We trace the difficulty back to a geometric obstacle: On a nonsmooth set, there may be sequences of points along which standard measures of stationarity tend to zero, but whose limit points are not stationary. We name such events apocalypses, as they can cause optimization algorithms to converge to non-stationary points. We illustrate this explicitly for an existing optimization algorithm on bounded-rank matrices. To provably find stationary points, we modify a trust-region method on a standard smooth parameterization of the variety. The method relies on the known fact that second-order stationary points on the parameter space map to stationary points on the variety. Our geometric observations and proposed algorithm generalize beyond bounded-rank matrices. We give a geometric characterization of apocalypses on general constraint sets, which implies that Clarke-regular sets do not admit apocalypses. Such sets include smooth manifolds, manifolds with boundaries, and convex sets. Our trust-region method supports parameterization by any complete Riemannian manifold.

, ,

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d^2) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this prob- lem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.

2021