Nilpotent groupIn mathematics, specifically group theory, a nilpotent group G is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}. Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable.
Solvable groupIn mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0).
SubgroupIn group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted H ≤ G, read as "H is a subgroup of G". The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G).
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Center (group theory)In abstract algebra, the center of a group, G, is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation, Z(G) = . The center is a normal subgroup, Z(G) ⊲ G. As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, G / Z(G), is isomorphic to the inner automorphism group, Inn(G). A group G is abelian if and only if Z(G) = G. At the other extreme, a group is said to be centerless if Z(G) is trivial; i.
Generating set of a groupIn abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if is a subset of a group , then , the subgroup generated by , is the smallest subgroup of containing every element of , which is equal to the intersection over all subgroups containing the elements of ; equivalently, is the subgroup of all elements of that can be expressed as the finite product of elements in and their inverses.