**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Subgroup

Summary

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted H ≤ G, read as "H is a subgroup of G".
The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e}).
If H is a subgroup of G, then G is sometimes called an overgroup of H.
The same definitions apply more generally when G is an arbitrary semigroup, but

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (2)

Related publications (26)

Loading

Loading

Loading

Related units (1)

Related concepts (55)

In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inver

In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are

Related courses (19)

MATH-310: Algebra

Study basic concepts of modern algebra: groups, rings, fields.

MATH-110(a): Advanced linear algebra I

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

COM-401: Cryptography and security

This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how they work and sketch how they can be implemented.

Let G a locally compact group, H a closed subgroup and 1 < p < ∞. It's well-known that the restriction of the functions from G to H is a surjective linear contraction from Ap(G) onto Ap(H). We prove, when H is amenable, that every element in Ap(H) with compact support can be extended to an element in Ap(G) of which we can check norm and support. This result is already known in the case of normal subgroups and also for compact subgroups. We obtain the existence of a quasi-coretract in the BAN category, as a substitute of a morphism ΓH such that ResH ◦ ΓH = idAp(H). Indeed, for an amenable subsgroup, the morphism ΓH, a priori, doesn't exist. So, we construct a net of morphismes in BAN from Ap(H) into Ap(G), that converge to idAp(H) for the strong operator's topology on Ap(H) (that's for us the notion of a quasi-coretract in BAN). Furthermore, if H is metrizable and σ-compact we obtain, more precisely, a sequence. Moreover, our approach allows us to extend to the non-abelian case some works of H. Reiter and C. Herz concerning the spectral synthesis of bounded uniformly continuous functions. My results are new even for the Fourier algebra.

This dissertation is concerned with the study of irreducible embeddings of simple algebraic groups of exceptional type. It is motivated by the role of such embeddings in the study of positive dimensional closed subgroups of classical algebraic groups. The classification of the maximal closed connected subgroups of simple algebraic groups was carried out by E. B. Dynkin, G. M. Seitz and D. M. Testerman. Their analysis for the classical groups was based primarily on a striking result: if G is a simple algebraic group and ø : G → SL(V ) is a tensor indecomposable irreducible rational representation then, with specified exceptions, the image of G is maximal among closed connected subgroups of one of the classical groups SL(V), Sp(V ) or SO(V ). In the case of closed, not necessarily connected, subgroups of the classical groups, one is interested in considering irreducible embeddings of simple algebraic groups and their automorphism groups: given a simple algebraic group Y defined over an algebraically closed field K, one is led to study the embeddings G < Aut(Y ), where G and Aut(Y ) are closed subgroups of SL(V ) and V is an irreducible rational KY -module on which G acts irreducibly. A partial analysis of such embeddings in the case of classical algebraic groups Y was carried out by B. Ford. We purpose to classify all triples (G, Y, V ) where Y is a simple algebraic group of exceptional type, defined over an algebraically closed field K of characteristic p > 0, G is a closed non-connected positive dimensional subgroup of Y and V is a nontrivial irreducible rational KY -module such that V|G is irreducible. We obtain a precise description of such triples (G, Y, V ).

A linear algebraic group G defined over a field k is called special if every G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special groups in the case where the base field is algebraically closed. In this paper we describe the derived subgroup and the coradical of a special reductive group over an arbitrary field k. We also classify special semisimple groups, special reductive groups of inner type, and special quasisplit reductive groups over an arbitrary field k. Finally, we give an application to a conjecture of Serre.

Related lectures (55)