In the fields of databases and transaction processing (transaction management), a schedule (or history) of a system is an abstract model to describe execution of transactions running in the system. Often it is a list of operations (actions) ordered by time, performed by a set of transactions that are executed together in the system. If the order in time between certain operations is not determined by the system, then a partial order is used. Examples of such operations are requesting a read operation, reading, writing, aborting, committing, requesting a lock, locking, etc. Not all transaction operation types should be included in a schedule, and typically only selected operation types (e.g., data access operations) are included, as needed to reason about and describe certain phenomena. Schedules and schedule properties are fundamental concepts in database concurrency control theory. The following is an example of a schedule: D In this example, the horizontal axis represents the different transactions in the schedule D. The vertical axis represents time order of operations. Schedule D consists of three transactions T1, T2, T3. The schedule describes the actions of the transactions as seen by the DBMS. First T1 Reads and Writes to object X, and then Commits. Then T2 Reads and Writes to object Y and Commits, and finally, T3 Reads and Writes to object Z and Commits. This is an example of a serial schedule, i.e., sequential with no overlap in time because the actions of all three transactions are sequential, and the transactions are not interleaved in time. Representing the schedule D above by a table (rather than a list) is just for the convenience of identifying each transaction's operations in a glance. This notation is used throughout the article below. A more common way in the technical literature for representing such schedule is by a list: D = R1(X) W1(X) Com1 R2(Y) W2(Y) Com2 R3(Z) W3(Z) Com3 Usually, for the purpose of reasoning about concurrency control in databases, an operation is modelled as atomic, occurring at a point in time, without duration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
CS-322: Introduction to database systems
This course provides a deep understanding of the concepts behind data management systems. It covers fundamental data management topics such as system architecture, data models, query processing and op
CS-422: Database systems
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students
Related concepts (7)
Serializability
In concurrency control of databases, transaction processing (transaction management), and various transactional applications (e.g., transactional memory and software transactional memory), both centralized and distributed, a transaction schedule is serializable if its outcome (e.g., the resulting database state) is equal to the outcome of its transactions executed serially, i.e. without overlapping in time. Transactions are normally executed concurrently (they overlap), since this is the most efficient way.
Isolation (database systems)
In database systems, isolation determines how transaction integrity is visible to other users and systems. A lower isolation level increases the ability of many users to access the same data at the same time, but increases the number of concurrency effects (such as dirty reads or lost updates) users might encounter. Conversely, a higher isolation level reduces the types of concurrency effects that users may encounter, but requires more system resources and increases the chances that one transaction will block another.
Two-phase locking
In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the resulting set of database transaction schedules (histories). The protocol uses locks, applied by a transaction to data, which may block (interpreted as signals to stop) other transactions from accessing the same data during the transaction's life. By the 2PL protocol, locks are applied and removed in two phases: Expanding phase: locks are acquired and no locks are released.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.