Kepler is the codename for a GPU microarchitecture developed by Nvidia, first introduced at retail in April 2012, as the successor to the Fermi microarchitecture. Kepler was Nvidia's first microarchitecture to focus on energy efficiency. Most GeForce 600 series, most GeForce 700 series, and some GeForce 800M series GPUs were based on Kepler, all manufactured in 28 nm. Kepler also found use in the GK20A, the GPU component of the Tegra K1 SoC, as well as in the Quadro Kxxx series, the Quadro NVS 510, and Nvidia Tesla computing modules. Kepler was followed by the Maxwell microarchitecture and used alongside Maxwell in the GeForce 700 series and GeForce 800M series.
The architecture is named after Johannes Kepler, a German mathematician and key figure in the 17th century scientific revolution.
Where the goal of Nvidia's previous architecture was design focused on increasing performance on compute and tessellation, with Kepler architecture Nvidia targeted their focus on efficiency, programmability and performance. The efficiency aim was achieved through the use of a unified GPU clock, simplified static scheduling of instruction and higher emphasis on performance per watt. By abandoning the shader clock found in their previous GPU designs, efficiency is increased, even though it requires additional cores to achieve higher levels of performance. This is not only because the cores are more power-friendly (two Kepler cores using 90% power of one Fermi core, according to Nvidia's numbers), but also the change to a unified GPU clock scheme delivers a 50% reduction in power consumption in that area.
Programmability aim was achieved with Kepler's Hyper-Q, Dynamic Parallelism and multiple new Compute Capabilities 3.x functionality. With it, higher GPU utilization and simplified code management was achievable with GK GPUs thus enabling more flexibility in programming for Kepler GPUs.
Finally with the performance aim, additional execution resources (more CUDA cores, registers and cache) and with Kepler's ability to achieve a memory clock speed of 7 GHz, increases Kepler's performance when compared to previous Nvidia GPUs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
This course provides insight into a broad variety of High Performance Computing (HPC) concepts and the majority of modern HPC architectures. Moreover, the student will learn to have a feeling about wh
Fermi is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia, first released to retail in April 2010, as the successor to the Tesla microarchitecture. It was the primary microarchitecture used in the GeForce 400 series and GeForce 500 series. It was followed by Kepler, and used alongside Kepler in the GeForce 600 series, GeForce 700 series, and GeForce 800 series, in the latter two only in mobile GPUs. In the workstation market, Fermi found use in the Quadro x000 series, Quadro NVS models, as well as in Nvidia Tesla computing modules.
In computing, especially digital signal processing, the multiply–accumulate (MAC) or multiply-add (MAD) operation is a common step that computes the product of two numbers and adds that product to an accumulator. The hardware unit that performs the operation is known as a multiplier–accumulator (MAC unit); the operation itself is also often called a MAC or a MAD operation. The MAC operation modifies an accumulator a: When done with floating point numbers, it might be performed with two roundings (typical in many DSPs), or with a single rounding.
Nvidia Tesla was the name of Nvidia's line of products targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs. The Nvidia Tesla product line competed with AMD's Radeon Instinct and Intel Xeon Phi lines of deep learning and GPU cards.
Using the GKEngine code which simulates an electrostatic plasma with adiabatic electron response under a sheared-slab geometry, an attempt at developing a hybrid approach between the delta-f and full-f schemes to describe plasma profiles exhibiting high fl ...
Strong gravitational lensing is a powerful probe of cosmology and the dark matter distribution. Efficient lensing software is already a necessity to fully use its potential and the performance demands will only increase with the upcoming generation of tele ...
ELSEVIER2020
Timely insights lead to business growth and scientific breakthroughs but require analytical engines that cope with the ever-increasing data processing needs. Analytical engines relied on rapid CPU improvements, yet the end of Dennard scaling stopped the fr ...