The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out.
In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD). MHD theory is the simplest representation of a plasma, so MHD stability is a necessity for stable devices to be used for nuclear fusion, specifically magnetic fusion energy. There are, however, other types of instabilities, such as velocity-space instabilities in magnetic mirrors and systems with beams. There are also rare cases of systems, e.g. the field-reversed configuration, predicted by MHD to be unstable, but which are observed to be stable, probably due to kinetic effects.
Plasma instabilities can be divided into two general groups:
hydrodynamic instabilities
kinetic instabilities.
Plasma instabilities are also categorised into different modes (e.g. with reference to a particle beam):
Buneman instability,
Farley–Buneman instability,
Jeans–Buneman instability,
Relativistic Buneman instability,
Cherenkov instability,
Coalescence instability,
Non-linear coalescence instability
Chute instability,
Collapse instability,
Cyclotron instabilities, including:
Alfven cyclotron instability
Cyclotron maser instability,
Electron cyclotron instability
Electrostatic ion cyclotron Instability
Ion cyclotron instability
Magnetoacoustic cyclotron instability
Proton cyclotron instability
Non-resonant beam-type cyclotron instability
Relativistic ion cyclotron instability
Whistler cyclotron instability
Diocotron instability, (similar to the Kelvin-Helmholtz fluid instability).
Disruptive instability (in tokamaks)
Double emission instability,
Edge-localized modes,
Explosive instability (or Ballooning instability),
Double plasma resonance instability,
Drift instability (a.k.a.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur.
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
An optimized plasma current ramp-down strategy is critical for safe and fast termination of plasma discharges in a tokamak demonstration fusion reactor (DEMO), both in planned and emergency scenarios, avoiding plasma disruptions and excessive heat loads to ...
Bristol2024
, , , , , , , , , , ,
The impact of plasma shaping on the properties of high density H-mode scrape-off layer (SOL) profiles and transport at the outer midplane has been investigated on Tokamaka configuration variable. The experimental dataset has been acquired by evolving the u ...
Bristol2024
, , , , , , , , , , , , ,
Under the auspices of EUROfusion, the ITER baseline (IBL) scenario has been jointly investigated on AUG and TCV in the past years and this paper reports on the developments on TCV. It is found that the performance of TCV IBL is mainly limited by (neoclassi ...