Concept

Inertial confinement fusion

Summary
Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H). Energy is deposited in the target's outer layer, which explodes outward. This produces a reaction force in the form of shock waves that travel through the target. The waves compress and heat it. Sufficiently powerful shock waves generate fusion. ICF is one of two major branches of fusion energy research; the other is magnetic confinement fusion. When first proposed in the early 1970s, ICF appeared to be a practical approach to power production and the field flourished. Experiments demonstrated that the efficiency of these devices was much lower than expected. Throughout the 1980s and '90s, experiments were conducted in order to understand the interaction of high-intensity laser light and plasma. These led to the design of much larger machines that achieved ignition-generating energies. The largest operational ICF experiment is the National Ignition Facility (NIF) in the US. In 2022, the NIF produced fusion, delivering 2.05 megajoules (MJ) of energy to the target which produced 3.15 MJ, the first time that an ICF device produced more energy than was delivered to the target. Nuclear fusionFusion reactions combine smaller atoms to form larger ones. This occurs when two atoms (or ions, atoms stripped of their electrons) come close enough to each other that the nuclear force dominates the electrostatic force that otherwise keeps them apart. Overcoming electrostatic repulsion requires kinetic energy sufficient to overcome the Coulomb barrier or fusion barrier. Less energy is needed to cause lighter nuclei to fuse, as they have less electrical charge and thus a lower barrier energy. Thus the barrier is lowest for hydrogen. Conversely, the nuclear force increases with the number of nucleons, so isotopes of hydrogen that contain additional neutrons reduce the required energy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)

Loading

Loading

Loading

Show more
Related concepts (44)
Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory (LLNL) is a federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now is sponsored by the United States Department of Energy and administered by Lawrence Livermore National Security, LLC. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response to the detonation of the Soviet Union's first atomic bomb during the Cold War.
Inertial confinement fusion
Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H). Energy is deposited in the target's outer layer, which explodes outward. This produces a reaction force in the form of shock waves that travel through the target. The waves compress and heat it. Sufficiently powerful shock waves generate fusion.
Fusion power
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur.
Show more
Related courses (12)
PHYS-445: Nuclear fusion and plasma physics
The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
PHYS-632: Fusion and industrial plasma technologies
The course provides an overview of the technologies that are essential for fusion developments and for industrial plasma applications, highlighting the synergies between the two fields. The aim is to
Show more
Related lectures (109)
Approaches to Fusion Energy
Explores the two main approaches to fusion energy, covering conditions for energy generation, compression techniques, physics of Inertial Confinement Fusion, progress in research, and engineering constraints.
Thermonuclear Fusion: Power Balance
Explores fusion power density, losses, breakeven, ignition, and engineering fusion gain in thermonuclear fusion reactors.
Glass Bonding Techniques
Explores glass bonding techniques to silicon, covering principles, mechanisms, applications, and evaluation methods, including surface treatments for enhanced adhesion strength.
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more