In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic. Morera's theorem states that a continuous, complex-valued function f defined on an open set D in the complex plane that satisfies for every closed piecewise C1 curve in D must be holomorphic on D. The assumption of Morera's theorem is equivalent to f locally having an antiderivative on D. The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero. The standard counterexample is the function f(z) = 1/z, which is holomorphic on C − {0}. On any simply connected neighborhood U in C − {0}, 1/z has an antiderivative defined by L(z) = ln(r) + iθ, where z = reiθ. Because of the ambiguity of θ up to the addition of any integer multiple of 2pi, any continuous choice of θ on U will suffice to define an antiderivative of 1/z on U. (It is the fact that θ cannot be defined continuously on a simple closed curve containing the origin in its interior that is the root of why 1/z has no antiderivative on its entire domain C − {0}.) And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and the result will still be an antiderivative of 1/z. In a certain sense, the 1/z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/z itself does not have an antiderivative on C − {0}. There is a relatively elementary proof of the theorem. One constructs an anti-derivative for f explicitly. Without loss of generality, it can be assumed that D is connected. Fix a point z0 in D, and for any , let be a piecewise C1 curve such that and .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.