In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic. Morera's theorem states that a continuous, complex-valued function f defined on an open set D in the complex plane that satisfies for every closed piecewise C1 curve in D must be holomorphic on D. The assumption of Morera's theorem is equivalent to f locally having an antiderivative on D. The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero. The standard counterexample is the function f(z) = 1/z, which is holomorphic on C − {0}. On any simply connected neighborhood U in C − {0}, 1/z has an antiderivative defined by L(z) = ln(r) + iθ, where z = reiθ. Because of the ambiguity of θ up to the addition of any integer multiple of 2pi, any continuous choice of θ on U will suffice to define an antiderivative of 1/z on U. (It is the fact that θ cannot be defined continuously on a simple closed curve containing the origin in its interior that is the root of why 1/z has no antiderivative on its entire domain C − {0}.) And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and the result will still be an antiderivative of 1/z. In a certain sense, the 1/z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/z itself does not have an antiderivative on C − {0}. There is a relatively elementary proof of the theorem. One constructs an anti-derivative for f explicitly. Without loss of generality, it can be assumed that D is connected. Fix a point z0 in D, and for any , let be a piecewise C1 curve such that and .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.