The first systematic measurements of global direct irradiance at the Earth's surface began in the 1950s. A decline in irradiance was soon observed, and it was given the name of global dimming. It continued from 1950s until 1980s, with an observed reduction of 4–5% per decade, even though solar activity did not vary more than the usual at the time. Global dimming has instead been attributed to an increase in atmospheric particulate matter, predominantly sulfate aerosols, as the result of rapidly growing air pollution due to post-war industrialization. After 1980s, global dimming started to reverse, alongside reductions in particulate emissions, in what has been described as global brightening, although this reversal is only considered "partial" for now. The reversal has also been globally uneven, as the dimming trend continued during the 1990s over some mostly developing countries like India, Zimbabwe, Chile and Venezuela. Over China, the dimming trend continued at a slower rate after 1990, and did not begin to reverse until around 2005.
Global dimming has interfered with the hydrological cycle by lowering evaporation, which is likely to have reduced rainfall in certain areas, and may have caused the observed southwards shift of the entire tropical rain belt between 1950 and 1985, with a limited recovery afterwards. Since high evaporation at the tropics is needed to drive the wet season, cooling caused by particulate pollution appears to weaken Monsoon of South Asia, while reductions in pollution strengthen it. Multiple studies have also connected record levels of particulate pollution in the Northern Hemisphere to the monsoon failure behind the 1984 Ethiopian famine, although the full extent of anthropogenic vs. natural influences on that event is still disputed. On the other hand, global dimming has also counteracted some of the greenhouse gas emissions, effectively "masking" the total extent of global warming experienced to date, with the most-polluted regions even experiencing cooling in the 1970s.