In telecommunications, an atmospheric duct is a horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals (and light rays) are guided or ducted, tend to follow the curvature of the Earth, and experience less attenuation in the ducts than they would if the ducts were not present. The duct acts as an atmospheric dielectric waveguide and limits the spread of the wavefront to only the horizontal dimension.
Atmospheric ducting is a mode of propagation of electromagnetic radiation, usually in the lower layers of Earth’s atmosphere, where the waves are bent by atmospheric refraction. In over-the-horizon radar, ducting causes part of the radiated and target-reflection energy of a radar system to be guided over distances far greater than the normal radar range. It also causes long distance propagation of radio signals in bands that would normally be limited to line of sight.
Normally radio "ground waves" propagate along the surface as creeping waves. That is, they are only diffracted around the curvature of the earth. This is one reason that early long distance radio communication used long wavelengths. The best known exception is that HF (3–30 MHz.) waves are reflected by the ionosphere.
The reduced refractive index due to lower densities at the higher altitudes in the Earth's atmosphere bends the signals back toward the Earth. Signals in a higher refractive index layer, i.e., duct, tend to remain in that layer because of the reflection and refraction encountered at the boundary with a lower refractive index material. In some weather conditions, such as inversion layers, density changes so rapidly that waves are guided around the curvature of the earth at constant altitude.
Phenomena of atmospheric optics related to atmospheric ducting include the green flash, Fata Morgana, superior mirage, mock mirage of astronomical objects and the Novaya Zemlya effect.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A Fata Morgana (ˈfaːta morˈɡaːna) is a complex form of superior mirage visible in a narrow band right above the horizon. The term Fata Morgana is the Italian translation of "Morgan the Fairy" (Morgan le Fay of Arthurian legend). These mirages are often seen in the Italian Strait of Messina, and were described as fairy castles in the air or false land conjured by her magic. Fata Morgana mirages significantly distort the object or objects on which they are based, often such that the object is completely unrecognizable.
Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air decreasing (the refractive index increases) with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages.
A mirage of an astronomical object is a meteorological optical phenomenon, in which light rays are bent to produce distorted or multiple images of an astronomical object. The mirages might be observed for such celestial objects as the Sun, the Moon, the planets, bright stars, and very bright comets. The most commonly observed of these are sunset and sunrise mirages. Mirages are distinguished from other phenomena caused by atmospheric refraction.
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of w ...
Springer2015
,
A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS) with a fiber optic cable attach ...
2011
Water vapor plays an important role in weather, global climate processes and atmospheric chemistry. It is the most significant greenhouse gas and affects the planet's radiative and non-radiative energy balance. The distribution of water vapor in the atmosp ...