MATH-225: Topology II - fundamental groupsOn étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
MATH-726(2): Working group in Topology IIThe theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
MATH-479: Linear algebraic groupsThe aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
MATH-613: Abelian varietiesThis will be a basic course on abelian varieties. We will start with the analytic point of view, and then we will pass on to the algebraic one. A basic knowledge of differential geometry and algebraic
MATH-645: Young Topologists Meeting Mini-CoursesWe expect these mini-courses to equip junior researchers with new tools, techniques, and perspectives for attacking a broad range of questions in their own areas of research while also inspiring stude
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
MATH-687: Algebraic models for homotopy typesln this course we will develop algebraic and coalgebraic models for homotopy types.
Among other things we will learn about Quillen's and Sullivan's model of rationâl homotopy types and about Mandell's