Concept

Two-way finite automaton

Summary
In computer science, in particular in automata theory, a two-way finite automaton is a finite automaton that is allowed to re-read its input. A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value indicating whether the machine will move its position in the input to the left, right, or stay at the same position. Equivalently, 2DFAs can be seen as read-only Turing machines with no work tape, only a read-only input tape. 2DFAs were introduced in a seminal 1959 paper by Rabin and Scott, who proved them to have equivalent power to one-way DFAs. That is, any formal language which can be recognized by a 2DFA can be recognized by a DFA which only examines and consumes each character in order. Since DFAs are obviously a special case of 2DFAs, this implies that both kinds of machines recognize precisely the class of regular languages. However, the equivalent DFA for a 2DFA may require exponentially many states, making 2DFAs a much more practical representation for algorithms for some common problems. 2DFAs are also equivalent to read-only Turing machines that use only a constant amount of space on their work tape, since any constant amount of information can be incorporated into the finite control state via a product construction (a state for each combination of work tape state and control state). Formally, a two-way deterministic finite automaton can be described by the following 8-tuple: where is the finite, non-empty set of states is the finite, non-empty set of input symbols is the left endmarker is the right endmarker is the start state is the end state is the reject state In addition, the following two conditions must also be satisfied: For all for some for some It says that there must be some transition possible when the pointer reaches either end of the input word.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.