Summary
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started. Nuclear fuel rods become progressively more radioactive (and less thermally useful) due to neutron activation as they are fissioned, or "burnt" in the reactor. A fresh rod of low enriched uranium pellets (which can be safely handled with gloved hands) will become a highly lethal gamma emitter after 1-2 years of core irradiation, unsafe to approach unless under many feet of water shielding. This makes their invariable accumulation and safe temporary storage in spent fuel pools a prime source of high level radioactive waste and a major ongoing issue for future permanent disposal. In the oxide fuel, intense temperature gradients exist that cause fission products to migrate. The zirconium tends to move to the centre of the fuel pellet where the temperature is highest, while the lower-boiling fission products move to the edge of the pellet. The pellet is likely to contain many small bubble-like pores that form during use; the fission product xenon migrates to these voids. Some of this xenon will then decay to form caesium, hence many of these bubbles contain a large concentration of 135Cs Caesium-135. In the case of mixed oxide (MOX) fuel, the xenon tends to diffuse out of the plutonium-rich areas of the fuel, and it is then trapped in the surrounding uranium dioxide. The neodymium tends to not be mobile. Also metallic particles of an alloy of Mo-Tc-Ru-Pd tend to form in the fuel. Other solids form at the boundary between the uranium dioxide grains, but the majority of the fission products remain in the uranium dioxide as solid solutions. A paper describing a method of making a non-radioactive "uranium active" simulation of spent oxide fuel exists.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
PHYS-600: Frederic Joliot/Otto Hahn Summer School on nuclear reactors Physics, fuels and systems
The School's aim is to address the challenges of reactor design and optimal fuel cycles, and to broaden the understanding of theory and experiments. The programme of each School session is defined by
MSE-672: LNM Workshop 2023
Seminar for PhD/master-students and postdocs on experimental nuclear materials research and simulation for present and future nuclear systems, with some emphasis on advanced manufacturing and analytic
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Show more