Summary
Filopodia (: filopodium) are slender cytoplasmic projections that extend beyond the leading edge of lamellipodia in migrating cells. Within the lamellipodium, actin ribs are known as microspikes, and when they extend beyond the lamellipodia, they're known as filopodia. They contain microfilaments (also called actin filaments) cross-linked into bundles by actin-bundling proteins, such as fascin and fimbrin. Filopodia form focal adhesions with the substratum, linking them to the cell surface. Many types of migrating cells display filopodia, which are thought to be involved in both sensation of chemotropic cues, and resulting changes in directed locomotion. Activation of the Rho family of GTPases, particularly cdc42 and their downstream intermediates, results in the polymerization of actin fibers by Ena/Vasp homology proteins. Growth factors bind to receptor tyrosine kinases resulting in the polymerization of actin filaments, which, when cross-linked, make up the supporting cytoskeletal elements of filopodia. Rho activity also results in activation by phosphorylation of ezrin-moesin-radixin family proteins that link actin filaments to the filopodia membrane. Filopodia have roles in sensing, migration, neurite outgrowth, and cell-cell interaction. To close a wound in vertebrates, growth factors stimulate the formation of filopodia in fibroblasts to direct fibroblast migration and wound closure. In macrophages, filopodia act as phagocytic tentacles, pulling bound objects towards the cell for phagocytosis. Filopodia are also used for movement of bacteria between cells, so as to evade the host immune system. The intracellular bacteria Ehrlichia are transported between cells through the host cell filopodia induced by the pathogen during initial stages of infection. Filopodia are the initial contact that human retinal pigment epithelial (RPE) cells make with elementary bodies of Chlamydia trachomatis, the bacteria that causes Chlamydia. Viruses have been shown to be transported along filopodia toward the cell body, leading to cell infection.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (5)
Actin: Polymerization and Cellular Functions
Explores actin's structure, polymerization, regulation in cells, and role in cellular structures.
Epididymis: Histological Structure and Function
Explores the histological structure and function of the epididymis, emphasizing cell types and secretion processes.
Adhesion and Mechanotransduction
Covers the structure and mechanics of mammalian cells, adhesion, mechanosensation, mechanotransduction, Rho signaling, actin dynamics, specialized actin organizations, integrins, and nuclear mechanotransduction.
Show more
Related publications (29)
Related concepts (13)
Cell membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.
Cell migration
Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular directions to specific locations. Cells often migrate in response to specific external signals, including chemical signals and mechanical signals. Errors during this process have serious consequences, including intellectual disability, vascular disease, tumor formation and metastasis.
Lamellipodium
The lamellipodium (: lamellipodia) (from Latin lamella, related to lamina, "thin sheet", and the Greek radical pod-, "foot") is a cytoskeletal protein actin projection on the leading edge of the cell. It contains a quasi-two-dimensional actin mesh; the whole structure propels the cell across a substrate. Within the lamellipodia are ribs of actin called microspikes, which, when they spread beyond the lamellipodium frontier, are called filopodia.
Show more