Summary
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc. Program Instructions (software) running on the microprocessor implement the digital filter by performing the necessary mathematical operations on the numbers received from the ADC. In some high performance applications, an FPGA or ASIC is used instead of a general purpose microprocessor, or a specialized digital signal processor (DSP) with specific paralleled architecture for expediting operations such as filtering. Digital filters may be more expensive than an equivalent analog filter due to their increased complexity, but they make practical many designs that are impractical or impossible as analog filters. Digital filters can often be made very high order, and are often finite impulse response filters, which allows for linear phase response. When used in the context of real-time analog systems, digital filters sometimes have problematic latency (the difference in time between the input and the response) due to the associated analog-to-digital and digital-to-analog conversions and anti-aliasing filters, or due to other delays in their implementation. Digital filters are commonplace and an essential element of everyday electronics such as radios, cellphones, and AV receivers. A digital filter is characterized by its transfer function, or equivalently, its difference equation. Mathematical analysis of the transfer function can describe how it will respond to any input.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (5)

Loading

Loading

Loading

Show more
Related concepts

Loading

Related courses (40)
EE-350: Signal processing
Dans ce cours, nous présentons les méthodes de base du traitement des signaux.
COM-418: Computers and music
In this class we will explore some of the fundamental ways in which the pervasiveness of digital devices has completely revolutionized the world of music in the last 40 years, both from the point of v
EE-550: Image and video processing
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
Show more
Related lectures

Loading

Related MOOCs (6)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more