En électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.), les filtres numériques sont réalisés soit par des circuits intégrés dédiés, des processeurs programmables (FPGA, microprocesseur, DSP, microcontrôleur, etc.), soit par logiciel dans un ordinateur.
Les filtres numériques peuvent, en théorie, réaliser la totalité des effets de filtrage pouvant être définis par des fonctions mathématiques ou des algorithmes. Les deux principales limitations des filtres numériques sont la vitesse et le coût. La vitesse du filtre est limitée par la vitesse (l'horloge, le « clock » en anglais) du processeur. Pour ce qui est du coût, celui-ci dépend du type de processeur utilisé. Par contre, le prix des circuits intégrés ne cesse de diminuer, et les filtres numériques se retrouvent partout dans notre environnement, radio, téléphone cellulaire, télévision, lecteurs MP3, etc.
Les filtres numériques étant généralement réalisés par des processeurs, ils sont décrits à l'aide de langages de programmation.
Un filtre numérique peut être défini par une équation différentielle, c'est-à-dire l'opération mathématique du filtre dans le domaine temporel (discret).
La forme générale du filtre d'ordre M est l'une des suivantes :
Une fonction de transfert, dans le domaine fréquentiel (Transformée en Z), permet également de définir un filtre numérique. Ainsi, la fonction de transfert générale d'ordre N d'un filtre numérique est la suivante :
ou autrement écrit
Les valeurs des coefficients et fixeront le type du filtre : passe-bas, passe-haut, etc.
Filtre à réponse impulsionnelle finie
Il y a deux grandes familles de filtres numériques : la première, les filtres RIF (filtres à réponse impulsionnelle finie), en anglais FIR (finite impulse response).