Binary tetrahedral groupIn mathematics, the binary tetrahedral group, denoted 2T or , is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C.
Hyperoctahedral groupIn mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of type B_n = C_n, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where S_n is the symmetric group of degree n.
Exceptional isomorphismIn mathematics, an exceptional isomorphism, also called an accidental isomorphism, is an isomorphism between members ai and bj of two families, usually infinite, of mathematical objects, which is incidental, in that it is not an instance of a general pattern of such isomorphisms. These coincidences are at times considered a matter of trivia, but in other respects they can give rise to consequential phenomena, such as exceptional objects. In the following, coincidences are organized according to the structures where they occur.
Spin connectionIn differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
Metaplectic groupIn mathematics, the metaplectic group Mp2n is a double cover of the symplectic group Sp2n. It can be defined over either real or p-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, and even the ring of adeles. The metaplectic group has a particularly significant infinite-dimensional linear representation, the Weil representation. It was used by André Weil to give a representation-theoretic interpretation of theta functions, and is important in the theory of modular forms of half-integral weight and the theta correspondence.
Clifford algebraIn mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and .
Dicyclic groupIn group theory, a dicyclic group (notation Dicn or Q4n, ) is a particular kind of non-abelian group of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as: More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
Postnikov systemIn homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov. A Postnikov system of a path-connected space is an inverse system of spaces with a sequence of maps compatible with the inverse system such that The map induces an isomorphism for every .
Binary cyclic groupIn mathematics, the binary cyclic group of the n-gon is the cyclic group of order 2n, , thought of as an extension of the cyclic group by a cyclic group of order 2. Coxeter writes the binary cyclic group with angle-brackets, ⟨n⟩, and the index 2 subgroup as (n) or [n]+. It is the binary polyhedral group corresponding to the cyclic group. In terms of binary polyhedral groups, the binary cyclic group is the preimage of the cyclic group of rotations () under the 2:1 covering homomorphism of the special orthogonal group by the spin group.