In physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). For example, an electromagnetic field has both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications, the signal strength excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in order to provide an input signal to a radio receiver. Field strength meters are used for such applications as cellular, broadcasting, wi-fi and a wide variety of other radio-related applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
PHYS-114: General physics : electromagnetism
Le cours traite des concepts de l'électromagnétisme, avec le support d'expériences. Les sujets traités inclus l'électrostatique, le courant électrique et circuits, la magnétostatique, l'induction élec
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
Related lectures (28)
Dielectric in Electric Field
Explores dipole moments, electrostatic energy, liquid crystal displays, and forces in inhomogeneous fields.
Maxwell's EquationsMOOC: Conversion electromécanique I
Covers Maxwell's equations, electric displacement, magnetic induction, and current density.
Magnetic Race Tracks & Skyrmions
Explores magnetic race tracks, skyrmions, and their practical applications in electronics, focusing on creation, motion, detection, and manipulation of skyrmions in nanomagnetic tracks.
Show more
Related publications (43)

Direct observations of X-rays produced by upward positive lightning

Marcos Rubinstein, Antonio Sunjerga, Farhad Rachidi-Haeri, Thomas Chaumont

X-rays have been observed in natural downward cloud-to-ground lightning for over 20 years and in rocket-triggered lightning for slightly less. In both cases, this energetic radiation has been detected during the stepped and dart leader phases of downward n ...
2024

Re-design of EU DEMO with a low aspect ratio

Hartmut Zohm

The design point that had been chosen for EU DEMO in 2016 is reviewed here and a modification is proposed with a lower aspect ratio. Previously the same aspect ratio, A, was chosen for EU DEMO as in major tokamak experiments including ITER (A = 3.1), and, ...
2024

Maple leaf antiferromagnet in a magnetic field

Frédéric Mila, Pratyay Ghosh, Ronny Thomale

We analyze the quantum antiferromagnet on the maple leaf lattice in the presence of a magnetic field. Starting from its exact dimer ground state and for a magnetic field strength of the order of the local dimer spin-exchange coupling, we perform a strong-c ...
College Pk2023
Show more
Related units (1)
Related concepts (4)
Radio wave
Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1mm, which is shorter than the diameter of a grain of rice. At 30 Hz the corresponding wavelength is ~, which is longer than the radius of the Earth. Wavelength of a radio wave is inversely proportional to its frequency, because its velocity is constant.
Field (physics)
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.
Electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by moving electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical counterpart to the quantized electromagnetic field tensor in quantum electrodynamics (a quantum field theory). The electromagnetic field propagates at the speed of light (in fact, this field can be identified as light) and interacts with charges and currents.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.