In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants".
Suppose is a function taking as input a vector and outputting a scalar If all second-order partial derivatives of exist, then the Hessian matrix of is a square matrix, usually defined and arranged as
That is, the entry of the ith row and the jth column is
If furthermore the second partial derivatives are all continuous, the Hessian matrix is a symmetric matrix by the symmetry of second derivatives.
The determinant of the Hessian matrix is called the .
The Hessian matrix of a function is the transpose of the Jacobian matrix of the gradient of the function ; that is:
If is a homogeneous polynomial in three variables, the equation is the implicit equation of a plane projective curve. The inflection points of the curve are exactly the non-singular points where the Hessian determinant is zero. It follows by Bézout's theorem that a cubic plane curve has at most inflection points, since the Hessian determinant is a polynomial of degree
Second partial derivative test
The Hessian matrix of a convex function is positive semi-definite. Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows:
If the Hessian is positive-definite at then attains an isolated local minimum at If the Hessian is negative-definite at then attains an isolated local maximum at If the Hessian has both positive and negative eigenvalues, then is a saddle point for Otherwise the test is inconclusive. This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave (concave downward) to convex (concave upward), or vice versa.
In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction (between peaks) and at a relative maximum along the crossing axis. However, a saddle point need not be in this form.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
EPFL2024
, ,
This work is concerned with approximating matrix functions for banded matrices, hierarchically semiseparable matrices, and related structures. We develop a new divide-and-conquer method based on (rational) Krylov subspace methods for performing low-rank up ...
SIAM PUBLICATIONS2022
,
Directors at firms with well-connected CEOs are more likely to obtain directorships at firms that are connected to the CEOs. Recommended directors do not become beholden to the CEO. Reciprocity is an important determinant of recommendations because CEOs ar ...