In telecommunication engineering, and in particular teletraffic engineering, the quality of voice service is specified by two measures: the grade of service (GoS) and the quality of service (QoS).
Grade of service is the probability of a call in a circuit group being blocked or delayed for more than a specified interval, expressed as a vulgar fraction or decimal fraction. This is always with reference to the busy hour when the traffic intensity is the greatest. Grade of service may be viewed independently from the perspective of incoming versus outgoing calls, and is not necessarily equal in each direction or between different source-destination pairs. "Grade of Service" sometimes means a measure of inbound call center traffic to verify adherence to conditions to measure the success of customers served.
On the other hand, the quality of service which a single circuit is designed or conditioned to provide, e.g. voice grade or program grade is called the quality of service. Quality criteria for such circuits may include equalization for amplitude over a specified band of frequencies, or in the case of digital data transported via analogue circuits, may include equalization for phase. Criteria for mobile quality of service in cellular telephone circuits include the probability of abnormal termination of the call.
When a user attempts to make a telephone call, the routing equipment handling the call has to determine whether to accept the call, reroute the call to alternative equipment, or reject the call entirely. Rejected calls occur as a result of heavy traffic loads (congestion) on the system and can result in the call either being delayed or lost. If a call is delayed, the user simply has to wait for the traffic to decrease, however if a call is lost then it is removed from the system.
The Grade of Service is one aspect of the quality a customer can expect to experience when making a telephone call. In a Loss System, the Grade of Service is described as that proportion of calls that are lost due to congestion in the busy hour.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Teletraffic engineering, telecommunications traffic engineering, or just traffic engineering when in context, is the application of transportation traffic engineering theory to telecommunications. Teletraffic engineers use their knowledge of statistics including queuing theory, the nature of traffic, their practical models, their measurements and simulations to make predictions and to plan telecommunication networks such as a telephone network or the Internet. These tools and knowledge help provide reliable service at lower cost.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.