Concept

Hybrid transformer

Summary
A hybrid transformer (also known as a bridge transformer, hybrid coil, or just hybrid) is a type of directional coupler which is designed to be configured as a circuit having four ports that are conjugate in pairs, implemented using one or more transformers. It is a particular case of the more general concept of a hybrid coupler. A signal arriving at one port is divided equally between the two adjacent ports but does not appear at the opposite port. In the schematic diagram, the signal into W splits between X and Z, and no signal passes to Y. Similarly, signals into X split to W and Y with none to Z, etc. Correct operation requires matched characteristic impedance at all four ports. Forms of hybrid other than transformer coils are possible; any format of directional coupler can be designed to be a hybrid. These formats include transmission lines and waveguides. The primary use of a voiceband hybrid transformer is to convert between 2-wire and 4-wire operation in sequential sections of a communications circuit, for example in a four-wire terminating set. Such conversion was necessary when repeaters were introduced in a 2-wire circuit, a frequent practice at early 20th century telephony. Without hybrids, the output of one amplifier feeds directly into the input of the other, resulting in uncontrollable feedback oscillation (upper diagram). By using hybrids, the outputs and inputs are isolated, resulting in correct 2-wire repeater operation. Late in the century, this practice became rare but hybrids continued in use in line cards. Hybrids are realized using transformers. Two versions of transformer hybrids were used, the single transformer version providing unbalanced outputs with one end grounded, and the double transformer version providing balanced ports. For use in 2-wire repeaters, the single transformer version suffices, since amplifiers in the repeaters have grounded inputs and outputs. X, Y, and Z share a common ground. As shown at left, signal into W, the 2-wire port, will appear at X and Z.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.