In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances (this can be as short as millimetres depending on frequency). However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.
Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas (they are then called feed lines or feeders), distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses. RF engineers commonly use short pieces of transmission line, usually in the form of printed planar transmission lines, arranged in certain patterns to build circuits such as filters. These circuits, known as distributed-element circuits, are an alternative to traditional circuits using discrete capacitors and inductors.
Ordinary electrical cables suffice to carry low frequency alternating current (AC), such as mains power, which reverses direction 100 to 120 times per second, and audio signals. However, they cannot be used to carry currents in the radio frequency range, above about 30 kHz, because the energy tends to radiate off the cable as radio waves, causing power losses. Radio frequency currents also tend to reflect from discontinuities in the cable such as connectors and joints, and travel back down the cable toward the source. These reflections act as bottlenecks, preventing the signal power from reaching the destination. Transmission lines use specialized construction, and impedance matching, to carry electromagnetic signals with minimal reflections and power losses.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Apply the knowledge acquired in Electroacoustics, Audio Engineering and Propagation of Acoustic Waves lectures.
The learning outcome is to increase the knowledge of simulation methods and the role of computers in the management and the operation of electric power systems.
In this lecture, we will describe the theoretical models and computational methods for the analysis of wave propagation along transmission lines.
The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length.
A hybrid transformer (also known as a bridge transformer, hybrid coil, or just hybrid) is a type of directional coupler which is designed to be configured as a circuit having four ports that are conjugate in pairs, implemented using one or more transformers. It is a particular case of the more general concept of a hybrid coupler. A signal arriving at one port is divided equally between the two adjacent ports but does not appear at the opposite port. In the schematic diagram, the signal into W splits between X and Z, and no signal passes to Y.
In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion is PT and the power received by the load after insertion is PR, then the insertion loss in decibels is given by, Insertion loss is a figure of merit for an electronic filter and this data is generally specified with a filter.
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
This article proposes a new two-wired amplifying active electrode (AE), presenting a high input impedance and a high common-mode rejection ratio (CMRR). In the proposed structure, the input impedance and the CMRR of the system are considerably increased by ...
Piscataway2024
,
A luminescent solar concentrator (LSC) offers a viable solution to spectrally convert and concentrate both direct and diffuse sunlight without the need for tracking. Its potential for commercialization is currently limited by the optical performance. A det ...