Concept

Sedimentary exhalative deposits

Sedimentary exhalative deposits (SEDEX or SedEx deposits) are zinc-lead deposits originally interpreted to have been formed by discharge of metal-bearing basinal fluids onto the seafloor resulting in the precipitation of mainly stratiform ore, often with thin laminations of sulphide minerals. SEDEX deposits are hosted largely by clastic rocks deposited in intracontinental rifts or failed rift basins and passive continental margins. Since these ore deposits frequently form massive sulfide lenses, they are also named sediment-hosted massive sulfide (SHMS) deposits, as opposed to volcanic-hosted massive sulfide (VHMS) deposits. The sedimentary appearance of the thin laminations led to early interpretations that the deposits formed exclusively or mainly by exhalative processes onto the seafloor, hence the term SEDEX. However, recent study of numerous deposits indicates that shallow subsurface replacement is also an important process, in several deposits the predominant one, with only local if any exhalations onto the seafloor. For this reason, some authors prefer the term "Clastic-dominated zinc-lead deposits". As used today, therefore, the term SEDEX is not to be taken to mean that hydrothermal fluids actually vented into the overlying water column, although this may have occurred in some cases. Main ore minerals in SEDEX deposits are fine-grained sphalerite and galena, chalcopyrite is significant in some deposits; silver-bearing sulfosalts are frequent minor constituents; pyrite is always present and can be a minor component or the dominant sulfide, as it is the case in massive sulfide bodies; barite content is common to absent, locally economic. SEDEX deposits are typified, among others, by Red Dog, McArthur River, Mount Isa, Rammelsberg, Sullivan. SEDEX deposits are the most important source of lead and zinc, and a major contributor of silver and copper. The source of metals and mineralizing solutions for SEDEX deposits is deep formational saline waters and brines that leach metals from clastic sedimentary rocks and the underlying basement.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.