Network topology is the arrangement of the elements (links, nodes, etc.) of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.
Network topology is the topological structure of a network and may be depicted physically or logically. It is an application of graph theory wherein communicating devices are modeled as nodes and the connections between the devices are modeled as links or lines between the nodes. Physical topology is the placement of the various components of a network (e.g., device location and cable installation), while logical topology illustrates how data flows within a network. Distances between nodes, physical interconnections, transmission rates, or signal types may differ between two different networks, yet their logical topologies may be identical. A network’s physical topology is a particular concern of the physical layer of the OSI model.
Examples of network topologies are found in local area networks (LAN), a common computer network installation. Any given node in the LAN has one or more physical links to other devices in the network; graphically mapping these links results in a geometric shape that can be used to describe the physical topology of the network. A wide variety of physical topologies have been used in LANs, including ring, bus, mesh and star. Conversely, mapping the data flow between the components determines the logical topology of the network. In comparison, Controller Area Networks, common in vehicles, are primarily distributed control system networks of one or more controllers interconnected with sensors and actuators over, invariably, a physical bus topology.
Two basic categories of network topologies exist, physical topologies and logical topologies.
The transmission medium layout used to link devices is the physical topology of the network.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Data communication or digital communications, including data transmission and data reception, is the transfer and reception of data in the form of a digital bitstream or a digitized analog signal transmitted over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.
A local area network (LAN) is a computer network that interconnects computers within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits. Ethernet and Wi-Fi are the two most common technologies in use for local area networks. Historical network technologies include ARCNET, Token Ring and AppleTalk.
In this seminar course students will get in depth understanding of mechanisms for private communication. This will be done by reading important papers that will be analyzed in the class. Students will
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Covers classical models of epidemic spreading and dynamics on networks with examples.
Covers a range of AutoCAD functions, including tools for drawing and dimension modification.
Covers the basics of statistical field theory, focusing on Ising models and the Ginsburg-Landau theory.
This work addresses the problem of learning the topology of a network from the signals emitted by the network nodes. These signals are generated over time through a linear diffusion process, where neighboring nodes exchange messages according to the underl ...
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
Decentralized storage networks offer services with intriguing possibilities to reduce inequalities in an extremely centralized market. Fair distribution of rewards, however, is still a persistent problem in the current generation of decentralized applicati ...