Concept

Snub dodecadodecahedron

In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U_40. It has 84 faces (60 triangles, 12 pentagons, and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{,5}, as a snub great dodecahedron. Cartesian coordinates for the vertices of a snub dodecadodecahedron are all the even permutations of (±2α, ±2, ±2β), (±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)), (±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)), (±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and (±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)), with an even number of plus signs, where β = (α2/τ+τ)/(ατ−1/τ), where τ = (1+)/2 is the golden mean and α is the positive real root of τα4−α3+2α2−α−1/τ, or approximately 0.7964421. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (2)
Inverted snub dodecadodecahedron
In geometry, the inverted snub dodecadodecahedron (or vertisnub dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U60. It is given a Schläfli symbol sr{5/3,5}. Cartesian coordinates for the vertices of an inverted snub dodecadodecahedron are all the even permutations of (±2α, ±2, ±2β), (±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)), (±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)), (±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and (±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)), with an even number of plus signs, where β = (α2/τ+τ)/(ατ−1/τ), where τ = (1+)/2 is the golden mean and α is the negative real root of τα4−α3+2α2−α−1/τ, or approximately −0.
Uniform star polyhedron
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra, 5 quasiregular ones, and 48 semiregular ones. There are also two infinite sets of uniform star prisms and uniform star antiprisms.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.