In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U_40. It has 84 faces (60 triangles, 12 pentagons, and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{,5}, as a snub great dodecahedron. Cartesian coordinates for the vertices of a snub dodecadodecahedron are all the even permutations of (±2α, ±2, ±2β), (±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)), (±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)), (±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and (±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)), with an even number of plus signs, where β = (α2/τ+τ)/(ατ−1/τ), where τ = (1+)/2 is the golden mean and α is the positive real root of τα4−α3+2α2−α−1/τ, or approximately 0.7964421. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.