En géométrie, le dodécadodécaèdre adouci est un polyèdre uniforme non convexe, indexé sous le nom U40. Ce polyèdre peut être considéré comme un grand dodécaèdre adouci. Les coordonnées cartésiennes des sommets d'un dodécadodécaèdre adouci centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)), (±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)), (±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) et (±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)), avec un nombre pair de signes plus, où β = (α2/τ+τ)/(ατ−1/τ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et α est la solution réelle positive de τα4−α3+2α2−α−1/τ, ou approximativement 0,7964421. En prenant les permutations impaires des coordonnées ci-dessus avec un nombre impair de signes plus, cela donne une autre forme, l'énantiomorphe de ce polyèdre.