Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye. The fundamental difference between radiometry and photometry is that radiometry gives the entire optical radiation spectrum, while photometry is limited to the visible spectrum. Radiometry is distinct from quantum techniques such as photon counting.
The use of radiometers to determine the temperature of objects and gasses by measuring radiation flux is called pyrometry. Handheld pyrometer devices are often marketed as infrared thermometers.
Radiometry is important in astronomy, especially radio astronomy, and plays a significant role in Earth remote sensing. The measurement techniques categorized as radiometry in optics are called photometry in some astronomical applications, contrary to the optics usage of the term.
Spectroradiometry is the measurement of absolute radiometric quantities in narrow bands of wavelength.
Integral quantities (like radiant flux) describe the total effect of radiation of all wavelengths or frequencies, while spectral quantities (like spectral power) describe the effect of radiation of a single wavelength λ or frequency ν. To each integral quantity there are corresponding spectral quantities, for example the radiant flux Φe corresponds to the spectral power Φe,λ and Φe,ν.
Getting an integral quantity's spectral counterpart requires a limit transition. This comes from the idea that the precisely requested wavelength photon existence probability is zero. Let us show the relation between them using the radiant flux as an example:
Integral flux, whose unit is W:
Spectral flux by wavelength, whose unit is :
where is the radiant flux of the radiation in a small wavelength interval .
The area under a plot with wavelength horizontal axis equals to the total radiant flux.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours a pour objectif de familiariser les étudiants avec les principaux concepts, instruments et techniques de la télédétection environnementale. Les interactions ondes/matière, les différents type
Students analyse the fundamental characteristics of optical detectors. Thermal and photoemissive devices as well as photodiodes and infrared sensors are studied. CCD and CMOS cameras are analysed in d
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time. The symbol Qe is often used throughout literature to denote radiant energy ("e" for "energetic", to avoid confusion with photometric quantities). In branches of physics other than radiometry, electromagnetic energy is referred to using E or W.
In physics, the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kg⋅s−3 in base units. Intensity is used most frequently with waves such as acoustic waves (sound) or electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used.
A photometer is an instrument that measures the strength of electromagnetic radiation in the range from ultraviolet to infrared and including the visible spectrum. Most photometers convert light into an electric current using a photoresistor, photodiode, or photomultiplier. Photometers measure: Illuminance Irradiance Light absorption Scattering of light Reflection of light Fluorescence Phosphorescence Luminescence Historically, photometry was done by estimation, comparing the luminous flux of a source with a standard source.
The appearance of objects is governed by how they reflect, transmit and absorb the light they receive. That, in turn, depends on the material's internal structure, surface structure, and viewing and illumination directions. Changes in those characteristics ...
EPFL2020
,
Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of ...
Many cnidarians engage in endosymbioses with microalgae of the family Symbiodiniaceae. In this association, the fitness of the cnidarian host is closely linked to the photosynthetic performance of its microalgal symbionts. Phototaxis may enable semi-sessil ...