Related concepts (31)
Comparison of programming paradigms
This article attempts to set out the various similarities and differences between the various programming paradigms as a summary in both graphical and tabular format with links to the separate discussions concerning these similarities and differences in extant Wikipedia articles. There are two main approaches to programming: Imperative programming – focuses on how to execute, defines control flow as statements that change a program state. Declarative programming – focuses on what to execute, defines program logic, but not detailed control flow.
String interpolation
In computer programming, string interpolation (or variable interpolation, variable substitution, or variable expansion) is the process of evaluating a string literal containing one or more placeholders, yielding a result in which the placeholders are replaced with their corresponding values. It is a form of simple template processing or, in formal terms, a form of quasi-quotation (or logic substitution interpretation). The placeholder may be a variable name, or in some languages an arbitrary expression, in either case evaluated in the current context.
Comparison of programming languages
Programming languages are used for controlling the behavior of a machine (often a computer). Like natural languages, programming languages follow rules for syntax and semantics. There are thousands of programming languages and new ones are created every year. Few languages ever become sufficiently popular that they are used by more than a few people, but professional programmers may use dozens of languages in a career. Most programming languages are not standardized by an international (or national) standard, even widely used ones, such as Perl or Standard ML (despite the name).
Java bytecode
In computing, Java bytecode is the bytecode-structured instruction set of the Java virtual machine (JVM), a virtual machine that enables a computer to run programs written in the Java programming language and several other programming languages, see List of JVM languages. A Java programmer does not need to be aware of or understand Java bytecode at all. However, as suggested in the IBM developerWorks journal, "Understanding bytecode and what bytecode is likely to be generated by a Java compiler helps the Java programmer in the same way that knowledge of assembly helps the C or C++ programmer.
JetBrains
JetBrains s.r.o. (formerly IntelliJ Software s.r.o.) is a Czech software development private limited company which makes tools for software developers and project managers. The company has its headquarters in Prague, and has offices in China, Europe, and the United States. The company offers integrated development environments (IDEs) for a variety of programming languages. The company created the Kotlin programming language, which can run in a Java virtual machine (JVM), in 2011.
Swift (programming language)
Swift is a high-level general-purpose, multi-paradigm, compiled programming language developed by Apple Inc. and the open-source community. First released in June 2014, Swift was developed as a replacement for Apple's earlier programming language Objective-C, as Objective-C had been largely unchanged since the early 1980s and lacked modern language features. Swift works with Apple's Cocoa and Cocoa Touch frameworks, and a key aspect of Swift's design was the ability to interoperate with the huge body of existing Objective-C code developed for Apple products over the previous decades.
Nullable type
Nullable types are a feature of some programming languages which allow a value to be set to the special value NULL instead of the usual possible values of the data type. In statically typed languages, a nullable type is an option type, while in dynamically typed languages (where values have types, but variables do not), equivalent behavior is provided by having a single null value. NULL is frequently used to represent a missing value or invalid value, such as from a function that failed to return or a missing field in a database, as in NULL in SQL.
Callback (computer programming)
In computer programming, a callback or callback function is any reference to executable code that is passed as an argument to another piece of code; that code is expected to call back (execute) the callback function as part of its job. This execution may be immediate as in a synchronous callback, or it might happen at a later point in time as in an asynchronous callback. They are also called blocking and non-blocking. Programming languages support callbacks in different ways, often implementing them with subroutines, lambda expressions, blocks, or function pointers.
Comparison of programming languages (syntax)
This comparison of programming languages compares the features of language syntax (format) for over 50 computer programming languages. Programming language expressions can be broadly classified into four syntax structures: prefix notation Lisp (* (+ 2 3) (expt 4 5)) infix notation Fortran (2 + 3) * (4 ** 5) suffix, postfix, or Reverse Polish notation Forth 2 3 + 4 5 ** * math-like notation TUTOR (2 + 3)(45) $$ note implicit multiply operator When a programming languages has statements, they typically have conventions for: statement separators; statement terminators; and line continuation A statement separator demarcates the boundary between two separate statements.
Covariance and contravariance (computer science)
Many programming language type systems support subtyping. For instance, if the type is a subtype of , then an expression of type should be substitutable wherever an expression of type is used. Variance is how subtyping between more complex types relates to subtyping between their components. For example, how should a list of s relate to a list of s? Or how should a function that returns relate to a function that returns ? Depending on the variance of the type constructor, the subtyping relation of the simple types may be either preserved, reversed, or ignored for the respective complex types.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.