Summary
In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential changes). This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time. The Schrödinger and Heisenberg pictures are related as active and passive transformations and commutation relations between operators are preserved in the passage between the two pictures. In the Schrödinger picture, the state of a system evolves with time. The evolution for a closed quantum system is brought about by a unitary operator, the time evolution operator. For time evolution from a state vector at time t0 to a state vector at time t, the time-evolution operator is commonly written , and one has In the case where the Hamiltonian H of the system does not vary with time, the time-evolution operator has the form where the exponent is evaluated via its Taylor series. The Schrödinger picture is useful when dealing with a time-independent Hamiltonian H; that is, . In elementary quantum mechanics, the state of a quantum-mechanical system is represented by a complex-valued wavefunction ψ(x, t). More abstractly, the state may be represented as a state vector, or ket, . This ket is an element of a Hilbert space, a vector space containing all possible states of the system. A quantum-mechanical operator is a function which takes a ket and returns some other ket . The differences between the Schrödinger and Heisenberg pictures of quantum mechanics revolve around how to deal with systems that evolve in time: the time-dependent nature of the system must be carried by some combination of the state vectors and the operators. For example, a quantum harmonic oscillator may be in a state for which the expectation value of the momentum, , oscillates sinusoidally in time.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.