Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems. Two broad categories are wave functions describing quantum systems using position or momentum variables, and the more abstract vector quantum states. Historical, educational, and application-focused problems typically feature wave functions; modern professional physics uses the abstract vector states. In both categories, quantum states divide into pure versus mixed states, or into coherent states and incoherent states. Categories with special properties include stationary states for time independence and quantum vacuum states in quantum field theory. As a tool for physics, quantum states grew out of states in classical mechanics. A classical dynamical state consists of a set of dynamical variables with well-defined real values at each instant of time. For example, the state of a cannon ball would consist of its position and velocity. The state values evolve under equations of motion and thus remain strictly determined. If we know the position of cannon and the exit velocity of its projectiles, then we can use equations containing the force of gravity to predict the trajectory of a cannon ball precisely. Similarly quantum states consist of sets of dynamical variables that evolve under equations of motion. However, the values derived from quantum states are complex numbers, quantized, limited by uncertainty relations, and only provide a probability distribution for the outcomes for a system. These constraints alter the nature of quantum dynamic variables.
Giuseppe Carleo, Stefano Barison, David Linteau
Sandrine Gerber, Gabriel Aeppli
,