Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period. The BOD value is most commonly expressed in milligrams of oxygen consumed per liter of sample during 5 days of incubation at 20 °C and is often used as a surrogate of the degree of organic water pollution. Biochemical Oxygen Demand (BOD) reduction is used as a gauge of the effectiveness of wastewater treatment plants. BOD of wastewater effluents is used to indicate the short-term impact on the oxygen levels of the receiving water. BOD analysis is similar in function to chemical oxygen demand (COD) analysis, in that both measure the amount of organic compounds in water. However, COD analysis is less specific, since it measures everything that can be chemically oxidized, rather than just levels of biologically oxidized organic matter. Most natural waters contain small quantities of organic compounds. Aquatic microorganisms have evolved to use some of these compounds as food. Microorganisms living in oxygenated waters use dissolved oxygen to oxidatively degrade the organic compounds, releasing energy which is used for growth and reproduction. Populations of these microorganisms tend to increase in proportion to the amount of food available. This microbial metabolism creates an oxygen demand proportional to the amount of organic compounds useful as food. Under some circumstances, microbial metabolism can consume dissolved oxygen faster than atmospheric oxygen can dissolve into the water or the autotrophic community (algae, cyanobacteria and macrophytes) can produce. Fish and aquatic insects may die when oxygen is depleted by microbial metabolism. Biochemical oxygen demand is the amount of oxygen required for microbial metabolism of organic compounds in water.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
ENV-405: Water and wastewater treatment
This course on water and wastewater treatment shows how to implement and design different methods and techniques to eliminate organic matter, nitrogen and phosporous from wastewater, and how to apply
ENV-167: Introduction to environmental engineering
Key themes in environmental science and engineering will be show-cased, with examples - from equator to the poles - including atmospheric processes and climate change, water quality, energy resources
ENV-304: Treatment and valorization of water and waste
Les systèmes eaux et déchets en Suisse: du traitement end-of-pipe à la fermeture des cycles. Principes de l'adduction, de l'évacuation et du traitement des eaux. Bases du dimensionnement des ouvrages,
Show more
Related lectures (25)
Wastewater Treatment: Nutrient Removal
Explores biological nutrient removal and chemical phosphorous removal in wastewater treatment plants, emphasizing denitrification and phosphate removal methods.
Wastewater Treatment I
Explores wastewater treatment principles, BOD removal efficiency, and typical pollutant concentrations.
Wastewater Treatment II
Delves into advanced wastewater treatment processes, including oxygen demand, phosphate removal, and biological nitrogen removal, addressing the challenges of micropollutants.
Show more
Related publications (78)

Estrogenic, Genotoxic, and Antibacterial Effects of Chemicals from Cryogenically Milled Tire Tread

Kristin Schirmer, Florian Frédéric Vincent Breider, Benoît Jean Dominique Ferrari, Thibault Béranger Masset

Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment,and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP,cryogenically milled tire ...
2024

Improving algal bloom detection using spectroscopic analysis and machine learning: A case study in a large artificial reservoir, South Korea

Trung-Dung Hoang

The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and timeconsuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for foreca ...
ELSEVIER2023

Ozonation of lake water and wastewater: Identification of carbonous and nitrogenous carbonyl-containing oxidation byproducts by non-target screening

Urs von Gunten, Joanna Maria Houska

Ozonation of drinking water and wastewater is accompanied by the formation of disinfection byproducts (DBPs) such as low molecular weight aldehydes and ketones from the reactions of ozone with dissolved organic matter (DOM). By applying a recently develope ...
PERGAMON-ELSEVIER SCIENCE LTD2023
Show more
Related concepts (15)
Sewage treatment
Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from.
Sewage
Sewage (or domestic sewage, domestic wastewater, municipal wastewater) is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater (from sinks, bathtubs, showers, dishwashers, and clothes washers) and blackwater (the water used to flush toilets, combined with the human waste that it flushes away).
Wastewater treatment
Wastewater treatment is a process which removes and eliminates contaminants from wastewater and converts this into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes (called water reclamation). The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.