Kuratowski closure axiomsIn topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator.
Adherent pointIn mathematics, an adherent point (also closure point or point of closure or contact point) of a subset of a topological space is a point in such that every neighbourhood of (or equivalently, every open neighborhood of ) contains at least one point of A point is an adherent point for if and only if is in the closure of thus if and only if for all open subsets if This definition differs from that of a limit point of a set, in that for a limit point it is required that every neighborhood of contains at least
Felix HausdorffFelix Hausdorff (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ; November 8, 1868 – January 26, 1942) was a German mathematician, pseudonym Paul Mongré, who is considered to be one of the founders of modern topology and who contributed significantly to set theory, descriptive set theory, measure theory, and functional analysis. Life became difficult for Hausdorff and his family after Kristallnacht in 1938. The next year he initiated efforts to emigrate to the United States, but was unable to make arrangements to receive a research fellowship.
Euclidean topologyIn mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Nowhere dense setIn mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas the interval (0, 1) is not nowhere dense. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the , which is used in the proof of several fundamental results of functional analysis.
Finite intersection propertyIn general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases. The finite intersection property can be used to reformulate topological compactness in terms of closed sets; this is its most prominent application.
Dense-in-itselfIn general topology, a subset of a topological space is said to be dense-in-itself or crowded if has no isolated point. Equivalently, is dense-in-itself if every point of is a limit point of . Thus is dense-in-itself if and only if , where is the derived set of . A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.) The notion of dense set is unrelated to dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).