Kuratowski closure axiomsIn topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator.
Point adhérentEn mathématiques et plus précisément en topologie, un point adhérent à une partie A d'un espace topologique E est un élément de l'adhérence de A, c'est-à-dire un point x de E tel que tout voisinage de x rencontre A (i.e. est non disjoint de A) ou encore : tout ouvert contenant x rencontre A. Tous les points de A sont adhérents à A ; d'autres points de E peuvent aussi, selon le cas, être adhérents à A. La notion de point adhérent à un ensemble A n'est pas intrinsèque, en ce sens qu'elle dépend de l'espace topologique dont A est vu comme sous-ensemble.
Felix HausdorffFelix Hausdorff est un mathématicien allemand né le à Breslau (aujourd'hui Wrocław) et mort le à Bonn. Il est l'auteur, sous le nom de Paul Mongré, de travaux philosophiques et littéraires. Considéré comme l'un des fondateurs de la topologie moderne, il contribua aussi significativement à la théorie des ensembles, à la théorie de la mesure et à l'analyse fonctionnelle. Son nom a été donné en 2007 au Centre Hausdorff pour les mathématiques de Bonn, ville où il a enseigné et s'est suicidé avec sa femme pour échapper à la déportation.
Euclidean topologyIn mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Ensemble nulle part denseEn topologie, un ensemble est nulle part dense ou rare s'il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous-ensemble A d'un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut être « approché » par des points de A. Soit X un espace topologique et A un sous-ensemble de X.
Finite intersection propertyIn general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases. The finite intersection property can be used to reformulate topological compactness in terms of closed sets; this is its most prominent application.
Dense-in-itselfIn general topology, a subset of a topological space is said to be dense-in-itself or crowded if has no isolated point. Equivalently, is dense-in-itself if every point of is a limit point of . Thus is dense-in-itself if and only if , where is the derived set of . A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.) The notion of dense set is unrelated to dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).