Concept

Ice core

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers (for shallow holes) or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old. The physical properties of the ice and of material trapped in it can be used to reconstruct the climate over the age range of the core. The proportions of different oxygen and hydrogen isotopes provide information about ancient temperatures, and the air trapped in tiny bubbles can be analysed to determine the level of atmospheric gases such as carbon dioxide. Since heat flow in a large ice sheet is very slow, the borehole temperature is another indicator of temperature in the past. These data can be combined to find the climate model that best fits all the available data. Impurities in ice cores may depend on location. Coastal areas are more likely to include material of marine origin, such as sea salt ions. Greenland ice cores contain layers of wind-blown dust that correlate with cold, dry periods in the past, when cold deserts were scoured by wind. Radioactive elements, either of natural origin or created by nuclear testing, can be used to date the layers of ice. Some volcanic events that were sufficiently powerful to send material around the globe have left a signature in many different cores that can be used to synchronise their time scales. Ice cores have been studied since the early 20th century, and several cores were drilled as a result of the International Geophysical Year (1957–1958). Depths of over 400 m were reached, a record which was extended in the 1960s to 2164 m at Byrd Station in Antarctica. Soviet ice drilling projects in Antarctica include decades of work at Vostok Station, with the deepest core reaching 3769 m.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
ENV-525: Physics and hydrology of snow
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction, and snow modeling. It transmits detailed understanding of physical processes within the snow and at its inte
Related lectures (22)
Paleoclimate: Climate Change Patterns
Explores paleoclimate through ice cores, isotopes, and temperature reconstructions, highlighting the influence of Earth's orbit and greenhouse gases on climate patterns.
Climate Sensitivity: Historical Climate Change Overview
Provides an overview of historical climate change, focusing on methane emissions, equilibrium climate sensitivity, and climate model evolution.
Finite Element Space: Conforming Mesh
Covers finite element spaces, conforming mesh construction, Galerkin error analysis, and best approximation error.
Show more
Related publications (222)

On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland Ice Sheet

Sonja Wahl

It is highly uncertain how the humidity flux between the snow surface and the atmosphere contributes to the surface mass balance (SMB) of the interior Greenland Ice Sheet (GrIS). Due to sparse observations, evaluations of the simulated humidity flux are li ...
Gottingen2024

Evolution of water content and suction of Opalinus Clay from recovery at the drilling site to handling in the laboratory

Lyesse Laloui, Alessio Ferrari, Angelica Tuttolomondo

Advanced geotechnical engineering applications, such as shale gas extraction, CO2 geological sequestration, and geological radioactive waste storage, often involve various types of shales located at significant depths. Shales exhibit mechanical properties ...
Oxford2024

Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy

Michael Lehning, Adrien Michel, Nander Wever, Daniel Nadeau, Benjamin Bouchard

Rain-on-snow events can cause severe flooding in snow-dominated regions. These are expected to become more frequent in the future as climate change shifts the precipitation from snowfall to rainfall. However, little is known about how winter rainfall inter ...
2024
Show more
Related concepts (21)
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Climatology
Climatology (from Greek κλίμα, klima, "slope"; and -λογία, -logia) or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospheric condition during an extended to indefinite period of time; weather is the condition of the atmosphere during a relative brief period of time. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change.
Greenhouse gas
Greenhouse gases are those gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by water vapor (), carbon dioxide (), methane (), nitrous oxide (), and ozone (). Without greenhouse gases, the average temperature of Earth's surface would be about , rather than the present average of .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.