Concept

Weighted projective space

In algebraic geometry, a weighted projective space P(a0,...,an) is the projective variety Proj(k[x0,...,xn]) associated to the graded ring k[x0,...,xn] where the variable xk has degree ak. If d is a positive integer then P(a0,a1,...,an) is isomorphic to P(da0,da1,...,dan). This is a property of the Proj construction; geometrically it corresponds to the d-tuple Veronese embedding. So without loss of generality one may assume that the degrees ai have no common factor. Suppose that a0,a1,...,an have no common factor, and that d is a common factor of all the ai with i≠j, then P(a0,a1,...,an) is isomorphic to P(a0/d,...,aj-1/d,aj,aj+1/d,...,an/d) (note that d is coprime to aj; otherwise the isomorphism does not hold). So one may further assume that any set of n variables ai have no common factor. In this case the weighted projective space is called well-formed. The only singularities of weighted projective space are cyclic quotient singularities. A weighted projective space is a Q-Fano variety and a toric variety. The weighted projective space P(a0,a1,...,an) is isomorphic to the quotient of projective space by the group that is the product of the groups of roots of unity of orders a0,a1,...,an acting diagonally.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.