Summary
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of . A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If X is a projective variety defined by a homogeneous prime ideal I, then the quotient ring is called the homogeneous coordinate ring of X. Basic invariants of X such as the degree and the dimension can be read off the Hilbert polynomial of this graded ring. Projective varieties arise in many ways. They are complete, which roughly can be expressed by saying that there are no points "missing". The converse is not true in general, but Chow's lemma describes the close relation of these two notions. Showing that a variety is projective is done by studying line bundles or divisors on X. A salient feature of projective varieties are the finiteness constraints on sheaf cohomology. For smooth projective varieties, Serre duality can be viewed as an analog of Poincaré duality. It also leads to the Riemann–Roch theorem for projective curves, i.e., projective varieties of dimension 1. The theory of projective curves is particularly rich, including a classification by the genus of the curve. The classification program for higher-dimensional projective varieties naturally leads to the construction of moduli of projective varieties. Hilbert schemes parametrize closed subschemes of with prescribed Hilbert polynomial. Hilbert schemes, of which Grassmannians are special cases, are also projective schemes in their own right.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.