SimplexIn geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment, a 2-dimensional simplex is a triangle, a 3-dimensional simplex is a tetrahedron, and a 4-dimensional simplex is a 5-cell. Specifically, a k-simplex is a k-dimensional polytope which is the convex hull of its k + 1 vertices.
Mapping cone (homological algebra)In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined and cokernel: if the chain complexes take their terms in an , so that we can talk about cohomology, then the cone of a map f being acyclic means that the map is a quasi-isomorphism; if we pass to the of complexes, this means that f is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism.