In measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on.
A measure on measurable space is called a finite measure if it satisfies
By the monotonicity of measures, this implies
If is a finite measure, the measure space is called a finite measure space or a totally finite measure space.
For any measurable space, the finite measures form a convex cone in the Banach space of signed measures with the total variation norm. Important subsets of the finite measures are the sub-probability measures, which form a convex subset, and the probability measures, which are the intersection of the unit sphere in the normed space of signed measures and the finite measures.
If is a Hausdorff space and contains the Borel -algebra then every finite measure is also a locally finite Borel measure.
If is a metric space and the is again the Borel -algebra, the weak convergence of measures can be defined. The corresponding topology is called weak topology and is the initial topology of all bounded continuous functions on . The weak topology corresponds to the weak* topology in functional analysis. If is also separable, the weak convergence is metricized by the Lévy–Prokhorov metric.
If is a Polish space and is the Borel -algebra, then every finite measure is a regular measure and therefore a Radon measure.
If is Polish, then the set of all finite measures with the weak topology is Polish too.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense.
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.
We consider nonlinear parabolic stochastic PDEs on a bounded Lipschitz domain driven by a Gaussian noise that is white in time and colored in space, with Dirichlet or Neumann boundary condition. We establish existence, uniqueness and moment bounds of the r ...
New York2023
,
In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit which measures by how much the STFT of a function fails to be optimally concentrated on an arbitrary set of pos ...