In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).
IPsec includes protocols for establishing mutual authentication between agents at the beginning of a session and negotiation of cryptographic keys to use during the session. IPsec can protect data flows between a pair of hosts (host-to-host), between a pair of security gateways (network-to-network), or between a security gateway and a host (network-to-host).
IPsec uses cryptographic security services to protect communications over Internet Protocol (IP) networks. It supports network-level peer authentication, data origin authentication, data integrity, data confidentiality (encryption), and replay protection (protection from replay attacks).
The initial IPv4 suite was developed with few security provisions. As a part of the IPv4 enhancement, IPsec is a layer 3 OSI model or internet layer end-to-end security scheme. In contrast, while some other Internet security systems in widespread use operate above the network layer, such as Transport Layer Security (TLS) that operates above the transport layer and Secure Shell (SSH) that operates at the application layer, IPsec can automatically secure applications at the internet layer.
Starting in the early 1970s, the Advanced Research Projects Agency sponsored a series of experimental ARPANET encryption devices, at first for native ARPANET packet encryption and subsequently for TCP/IP packet encryption; some of these were certified and fielded. From 1986 to 1991, the NSA sponsored the development of security protocols for the Internet under its Secure Data Network Systems (SDNS) program. This brought together various vendors including Motorola who produced a network encryption device in 1988. The work was openly published from about 1988 by NIST and, of these, Security Protocol at Layer 3 (SP3) would eventually morph into the ISO standard Network Layer Security Protocol (NLSP).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible. The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity, and authenticity through the use of cryptography, such as the use of certificates, between two or more communicating computer applications.
Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behaviour. Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more. SNMP is widely used in network management for network monitoring. SNMP exposes management data in the form of variables on the managed systems organized in a management information base (MIB), which describes the system status and configuration.
A virtual private network (VPN) is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet. A VPN can extend a private network (one that disallows or restricts public access), in such a way that it enables users of that network to send and receive data across public networks as if the public networks' devices were directly connected to the private network.
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
Explores efficient portfolios, risk management, and the CAPM model in finance.
, , , , ,
A method for aggregating digital signatures comprises the following steps carried out by a signature aggregator: receiving first data packages from signers, each first data package comprising a signer identifier, a payload, and a payload signature; verifyi ...
2024
,
Patterned membranes prepared via spray-modified non -solvent induced phase separation (s-NIPS) have successfully shown enhanced fluxes and better fouling control, thanks to the increased surface area and high fluid shear at the membrane/feed interface. The ...
Elsevier2024
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...