Decision tables are a concise visual representation for specifying which actions to perform depending on given conditions. They are algorithms whose output is a set of actions. The information expressed in decision tables could also be represented as decision trees or in a programming language as a series of if-then-else and switch-case statements.
Each decision corresponds to a variable, relation or predicate whose possible values are listed among the condition alternatives. Each action is a procedure or operation to perform, and the entries specify whether (or in what order) the action is to be performed for the set of condition alternatives the entry corresponds to.
To make them more concise, many decision tables include in their condition alternatives a don't care symbol. This can be a hyphen or blank, although using a blank is discouraged as it may merely indicate that the decision table has not been finished. One of the uses of decision tables is to reveal conditions under which certain input factors are irrelevant on the actions to be taken, allowing these input tests to be skipped and thereby streamlining decision-making procedures.
Aside from the basic four quadrant structure, decision tables vary widely in the way the condition alternatives and action entries are represented. Some decision tables use simple true/false values to represent the alternatives to a condition (similar to if-then-else), other tables may use numbered alternatives (similar to switch-case), and some tables even use fuzzy logic or probabilistic representations for condition alternatives. In a similar way, action entries can simply represent whether an action is to be performed (check the actions to perform), or in more advanced decision tables, the sequencing of actions to perform (number the actions to perform).
A decision table is considered balanced or complete if it includes every possible combination of input variables. In other words, balanced decision tables prescribe an action in every situation where the input variables are provided.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
With the ever-growing data sizes along with the increasing complexity of the modern problem formulations, contemporary applications in science and engineering impose heavy computational and storage burdens on the optimization algorithms. As a result, there ...